- · 《影像研究与医学应用》[05/29]
- · 《影像研究与医学应用》[05/29]
- · 《影像研究与医学应用》[05/29]
- · 《影像研究与医学应用》[05/29]
- · 《影像研究与医学应用》[05/29]
一、稿件要求: 1、稿件内容应该是与某一计算机类具体产品紧密相关的新闻评论、购买体验、性能详析等文章。要求稿件论点中立,论述详实,能够对读者的购买起到指导作用。文章体裁不限,字数不限。 2、稿件建议采用纯文本格式(*.txt)。如果是文本文件,请注明插图位置。插图应清晰可辨,可保存为*.jpg、*.gif格式。如使用word等编辑的文本,建议不要将图片直接嵌在word文件中,而将插图另存,并注明插图位置。 3、如果用电子邮件投稿,最好压缩后发送。 4、请使用中文的标点符号。例如句号为。而不是.。 5、来稿请注明作者署名(真实姓名、笔名)、详细地址、邮编、联系电话、E-mail地址等,以便联系。 6、我们保留对稿件的增删权。 7、我们对有一稿多投、剽窃或抄袭行为者,将保留追究由此引起的法律、经济责任的权利。 二、投稿方式: 1、 请使用电子邮件方式投递稿件。 2、 编译的稿件,请注明出处并附带原文。 3、 请按稿件内容投递到相关编辑信箱 三、稿件著作权: 1、 投稿人保证其向我方所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我方所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我方所投之作品不得同时向第三方投送,即不允许一稿多投。若投稿人有违反该款约定的行为,则我方有权不向投稿人支付报酬。但我方在收到投稿人所投作品10日内未作出采用通知的除外。 5、 投稿人授予我方享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 投稿人委托我方声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。
计算机软件及计算机应用论文_无监督密集匹配特
作者:网站采编关键词:
摘要:文章摘要:随着人工智能的发展,基于深度学习的有监督密集匹配方法在虚拟、室内以及驾驶等近景数据集上取得了不错的表现。针对航空影像密集匹配标签数据获取困难的问题,本文在
文章摘要:随着人工智能的发展,基于深度学习的有监督密集匹配方法在虚拟、室内以及驾驶等近景数据集上取得了不错的表现。针对航空影像密集匹配标签数据获取困难的问题,本文在无监督密集匹配框架下,借鉴多个有监督网络结构,分别在航空影像数据集和作为参照的近景数据集上测试了匹配精度,实现了网络结构模块与精度关系的定性分析,为进一步探索深度学习在测绘领域的实用化提供了重要的参考。实验在相同损失函数条件下,分别采用DispNetS、DispNetC、iResNet、GCNet、PSMNetB以及PSMNetS网络结构进行测试。经分析,得出如下结论:①测试的网络结构中,PSMNetS在航空影像数据集和近景数据集上表现稳定,且精度最高,训练整体耗时少,具有实用化的潜力;②在监督方法中效果更好的网络结构在无监督方法中效果不一定更好,其精度不仅取决于网络自身的匹配能力,同时也依赖于网络与损失函数的兼容性;③孪生网络模块、相关信息融合模块、金字塔池化模块和堆叠沙漏模块与无监督损失函数兼容性良好,可提升网络精度,而iResNet的图像重构迭代精化模块与重构损失函数重复约束,会产生“负优化”的作用。
文章关键词:
论文分类号:TP391.41
文章来源:《影像研究与医学应用》 网址: http://www.yxyjyyxyy.cn/qikandaodu/2021/1209/1893.html